Earth from Space - Image Information


LOCATION Direction Photo #: ISS015-E-29867 Date: Sep. 2007
Geographic Region: USA-UTAH
Feature: OPEN PIT MINE, BINGHAM CANYON


IMAGE
 
ISS015-E-29867 (20 Sept. 2007) --- Bingham Canyon Mine, Utah is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. The Bingham Canyon Mine (center) located approximately 32 kilometers to the southwest of Salt Lake City, UT is one of the largest open-pit mines in the world, measuring over 4 kilometers wide and 1,200 meters deep. The mine exploits a porphyry copper deposit, a type of geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. As the magma cools and crystallizes (forming an igneous rock with large crystals in a fine-grained matrix, known as a porphyry), hot fluids circulate through the magma and surrounding rocks via fractures. This process of hydrothermal alteration typically forms copper-bearing and other minerals in spatial patterns that a geologist recognizes as a potential porphyry copper deposit. Parallel benches (stepped terraces), visible along the western pit face (center left), range from 16 to 25 meters high - these provide access for equipment to work the rock face, as well as maintaining stability of the sloping pit walls. A dark, larger roadway is also visible directly below the benches. Brown to gray, flat topped hills of gangue (waste rock) surround the pit, and are thrown into sharp relief by shadows and the oblique viewing angle of this image. Leachate reservoirs associated with ore processing are visible to the south of the city of Bingham Canyon, UT (right).
Bingham Canyon Mine, Utah:

The Bingham Canyon Mine (image center) is one of the largest open-pit mines in the world, measuring over 4 kilometers wide and 1,200 meters deep. Located about 30 kilometers southwest of Salt Lake City, Utah, the mine exploits a porphyry copper deposit, a geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. As the magma cools and crystallizes, it forms an igneous rock with large crystals embedded in a fine-grained matrix, known as a porphyry. Hot fluids circulate through the magma and surrounding rocks via fractures, depositing copper-bearing and other minerals in spatial patterns that a geologist recognizes as a potential porphyry copper deposit.

Mining first began in Bingham Canyon in the late nineteenth century, when shafts were sunk to remove gold, silver, and lead deposits that played out by the early 1900s. It would take the advent of open-pit mining in 1899 to turn the Bingham copper deposit into an economically favorable resource. In open-pit mining, the copper-containing rocks are excavated from the surface downward in terraces. By the 1930s, open-pit mining had turned "the Hill" at Bingham Canyon into "the Pit."

This astronaut photograph of the Bingham Canyon Mine shows parallel benches (stepped terraces) along the western pit face. These benches range from 16 to 25 meters high, and they provide access for equipment to work the rock face and maintaining the stability of the sloping pit walls. A dark, larger roadway is also visible directly below the benches. Brown to gray, flat-topped hills of gangue (waste rock) surround the pit, and are thrown into sharp relief by shadows and the oblique (from the side) viewing angle of the photograph. Reservoirs for leach water (associated with ore processing) are visible to the south of the city of Bingham Canyon.

Today's copper market is booming thanks to global demands from construction, telecommunications, and electronics sectors of the economy. The Kennecott Utah Copper Company removes about half a million tons of material from the Bingham Canyon Mine every day for processing. In 1906, the rate of removal was 100,000 tons of material per month. Over 17 million tons of copper have been removed to date. Geological and engineering models suggest that the mine can be deepened by an additional 200 meters before extraction costs become greater than the value of the remaining copper.

The geological and chemical processes that produce copper deposits also produce minerals such as iron sulfides, which react with water or oxygen on the surface to produce colorful minerals. Geologists can sometimes use satellite observations to identify places where the topography and the rock types on the surface suggest copper ores might be present below ground. Read the feature story Prospecting from Orbit for more information.


Images: All Available Images Low-Resolution 299k
Mission: ISS015  
Roll - Frame: E - 29867
Geographical Name: USA-UTAH  
Features: OPEN PIT MINE, BINGHAM CANYON  
Center Lat x Lon: 40.5N x 112.2W
Film Exposure:   N=Normal exposure, U=Under exposed, O=Over exposed, F=out of Focus
Percentage of Cloud Cover-CLDP: 10
 
Camera:: E4
 
Camera Tilt: 37   LO=Low Oblique, HO=High Oblique, NV=Near Vertical
Camera Focal Length: 800  
 
Nadir to Photo Center Direction: W   The direction from the nadir to the center point, N=North, S=South, E=East, W=West
Stereo?:   Y=Yes there is an adjacent picture of the same area, N=No there isn't
Orbit Number: 2583  
 
Date: 20070920   YYYYMMDD
Time: 144643   GMT HHMMSS
Nadir Lat: 39.7N  
Latitude of suborbital point of spacecraft
Nadir Lon: 110.1W  
Longitude of suborbital point of spacecraft
Sun Azimuth: 104   Clockwise angle in degrees from north to the sun measured at the nadir point
Space Craft Altitude: 181   nautical miles
Sun Elevation: 18   Angle in degrees between the horizon and the sun, measured at the nadir point
Land Views: HILL, RANGE  
Water Views:  
Atmosphere Views:  
Man Made Views: MINING  
City Views: BINGHAM CANYON  

Photo is not associated with any sequences


NASA
Home Page
JSC
Home Page
JSC Digital
Image Collection
Earth Science &
Remote Sensing

NASA meatball logo
This service is provided by the International Space Station program and the JSC Earth Science & Remote Sensing Unit, ARES Division, Exploration Integration Science Directorate.
ESRS logo